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Abstract—The performance of a thermal energy storage module is simulated numerically. The change of

phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer

fluid with low Prandt] numbers are solved simultaneously as a conjugate problem. A parametric study and

a system optimization are conducted. The numerical results show that module geometry is crucial to the
design of a space-based thermal energy storage system.

INTRODUCTION

RECENTLY, the study of phase-change thermal energy
storage systems has been active due to applications to
space-based power plants and the utilization of solar
energy. Phase-change materials (PCM) have a large
latent heat, so it is an efficient way to absorb the heat
energy during the time period when the materials are
subject to heat input and to release it to space over a
long period of time. A basic latent heat thermal stor-
age geometry is shown schematically in Fig. 1. The
PCM surrounds a pipe, through which the heat trans-
fer fluid is passed. The problem by nature is a time-
dependent phase-change heat transfer problem com-
bined with conjugate forced convection.

Heat transfer involving melting and solidification
is a fertile area for research because of its great import-
ance in many applications. Since problems of this type
are inherently nonlinear due to the existence of a
moving interface the position of which is not known
a priori, there are relatively few analytical solutions
to these so-called Stefan problems. A large number of
numerical techniques have been developed, but most
of the numerical studies have focused on diffusion-
controlled phase-change problems or phase-change
problems including natural convection {1-6].

The use of a hollow cylinder of PCM similar to that
in Fig. 1 for a solar latent energy storage system was
modeled by Solomon er al. [7]. A finite difference
formulation with the Kirchhoff temperature was used
to calculate the internal energy, temperature, and the
position of the phase-change front. Stovall and Arim-
illi [8] studied a thermal energy storage system con-
sisting of a cylindrical tube filled with a phase-change
material having a high melting temperature. The tube
is surrounded by an annular region containing the
liquid metal heat transfer fluid for pulsed power load
applications. The emphasis of both of the above stud-
ies is on the diffusion-controlled heat transfer in the
PCM. The heat transfer between the transfer fluid and

the PCM is calculated using empirical correlations
instead of solving the flow and temperature fields of
the transfer fluid numericaily as a conjugate problem.
Also, the container wall shown in Fig. 1 was ignored.
It should be pointed out that most of the empirical
correlations are based on limited experimental or
numerical data and the fully-developed conditions;
the use of correlations may increase the uncertainty
of the numerical modeling. Furthermore, the change
of phase is by nature a transient problem. The bound-
ary temperature of the transfer fluid changes as the
phase-change interface progresses, therefore the tem-
perature field of the transfer fluid may never reach the
fully-developed state. This is especially important for
PCM storage systems with liquid metals as the trans-
fer fluid. With relatively shorter cylinders and lower
fluid velocities, the laminar combined hydrodynamic
and thermal entry region may dominate the flow along
the entire length of the cylinder.

In this paper, a PCM energy storage system with
the configuration in Fig. [ is modeled numerically.
The two-dimensional change of phase for the PCM
and the two-dimensional transient forced convection
entrance region for the transfer fluid with low Prandtl
numbers is solved simultancously. Also, the influence
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F1G. 1. The schematic of the latent heat storage system.
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NOMENCLATURE
¢ specific heat [T kg 'K '] T dimensionless temperature,
Cr specific heat of mushy phase, 1/2(¢,+¢;) (7T T —T%)
Fkg 'K 1 T*  scaled temperature, 7° — 7% [K]
¢ specific heat of PCM [J kg™ ' K] t time [s]
C"  coefficient in equation (5) [Tkg™ ' K ] U,  inlet velocity [ms ']
C e U. V' dimensionless velocities, «/U,. v/ U,
C, oy u, v velocities [ms ']
b inside diameter of the circular pipe, or X. R dimensionless coordinate directions.
diagonal distance {m] x/D,riD
@ integral in equation (18) x,r  coordinate directions.
4 integral in equation (19)
. -1
H latent heat [J kg. .] i Greek symbols
k thermal conductivity Wm ™' K] e e s
. . .. o thermal diffusivity [m- s ']
K dimensionless thermal conductivity, &/k, .
K, ik, 287" phase-change temperature range, or
L length of pipe [m] ) muoshy ?haseorange [6] [K]
reference length in Fig. 2 {m] . Loom R
¥ kinematic viscosity [m~ s~ ']
m total mass of the PCM [kg} - 3
Y p density (kg m "]
p pressure [N m™~} . . . .
: R T dimensionless time, U,#/D.
Do inlet pressure [Nm -}
P dimensionless pressure, (p—p,)/p:UZ
Pr;  fluid Prandtl number, v;/x Subscripts
0 heat energy [J] f transfer fluid
o) total latent energy stored [J] i initial condition, or inside radius of the
Q. total energy stored [J] pipe
Q.  energy storage density [J kg '] in inlet
Re;  fluid Reynolds number, U, D/v, inf  melting interface
A term in equation (5) [J kg™ '] 1 liquid PCM or latent heat
h ST, —T0) m mass or mushy phase
s interface position along the diagonal [m] o outer surface of the PCM module
St Stefan number. (T, —To)/ H P PCM
7 temperature [K} s solid PCM
T, melting temperature [K] w container wall.
of the container wall is included in the numerical du Qu u 13dp
analysis, and an optimization of the configurationis 3 T 3 T#ay = ~ pr Ox
conducted. To the authors™ knowledge. this work is o
the first PCM/forced convection conjugate problem +y [1 f (r‘?“) 1 1:, 3)
reported in the literature. rér\ or ax”
are  art ar
MATHEMATICAL MODELING Pty A +v A +£t'5¥

The continuity, momentum, and energy equations
governing two-dimensional transient incompressible
laminar flows with no viscous dissipation in a pipe are

1

¢ Ju

»(rvH»Z;—O (H
o + Rad fe  1dp
ar Ttar A pr OF

For the PCM, the temperature transforming model

ox?

[1 a( ﬁT")
=kel~\r—5— |+
ror or

a7
—*] )

[6] is used. The energy equation is written as
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where 7% = T°—T%,
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Cs
C° = C(T*) = + A
= BT
&}
(T* < —67°) (solid phase)
(—0T° < T* < 0T°) (mushy phase) (6)
(T* > 07°) (liquid phase)
¢,0T°
H
S°=8(T*)= | . 6T°+ 7
L ¢, 0T°+H
(T* < —6T°) (solid phase)
(—0T° < T* < 6T°) (mushy phase) 7
(T* > 6T1°) (liquid phase)
ks
k(T*) = | ky+ (k\—k)(T*+3T°)/20T°
ki
(T* < —07°) (solid phase)
(—07° < T* < 67°) (mushy phase) (8)
(T* > 0T°) (liquid phase).

For the pipe wall, the energy equation is

1¢( dT° orT°
=kw [r a\r(r_aT)"' :l (9)

ox?
The initial and boundary conditions for the case of
uniform inlet conditions are defined as follows:

aorTe
Pt g

initial conditions: t = 0
entiredomain: 0<x<L,0<r<r,
T°=T, u=v=0
boundary conditions: ¢ > 0
inlet plane: x =0
O<r<r: u=U, T°=T,

orT°
ox 0

r<r<r,:

outerwall: 0 <x < L,r=r,

or

PCM-wall interface: 0 < x< L,r=r,,

o
P or

oT°

« o

=k

—
r=ry

r=ry

wall-fluid interface: 0 < x < L, r =1,

ore aTe
ky— = ky——
o r=r,+ f ar r=r"
outlet plane: x = L
aTe
O<r<r,:. —=0
0x
d
O<r<r: Q—“:O
ix

The use of the temperature transforming model [6]
has two advantages. First, equations (5)—(8) form a
set of closed-group equations, so an explicit treatment
of the phase-change interface is not needed. Secondly,
the time step and grid size limitations are eliminated,
which are normally encountered for other fixed-grid
methods. It should be pointed out that due to the
space application the natural convection in the liquid
PCM has been ignored.

The following non-dimensional variables are intro-
duced :

R=r/D X_x U_u Ve v R _UOD
=T, k) "D _U07 _Uov €y = Ve k]
T°-T7 U —
T=oo—m =2y p=L"Pe
T.—Ty D peUs

c° k
C=--i K=p. S=58a(Th—T:),
G k,

St=c(T%—T)/H, OT* =0T |(T%~T5).

The dimensionless continuity, momentum and energy
equations for the transfer fluid are as follows:

l ¢ RV)+ 0U_ 0 (10)
R R X
oU oU P
L

ér ' OR ox ~ X
1[1 6/ 8U\ &U
+R_&[M(R6_R)+axz] an
F ) 4

y UaV_ aP
T RV exT Tar

L1 o (v
tRe |RIR\"GR) T
A O
aw VRV xT TR

ml li RaT +0_21 (13)
+Re,Prr ROR\" " OR)  oX* |

The dimensionless energy equation for the PCM is

J(CT) 1 o)l @ oT
cr A L L KRS
0t Re; Pr¢ af[R 6R( RéR

O (OTY]|_9S
tax\ax) | T

v v

(14)
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where
C, (T < —06T%*)
1 . .
a1y = | M +C)+ 5 smy (—0T* < T < 0T
I (T > 8T%)
C,o0T* (T < —0T*
1
VT*(1+Cy) + 257 (—0T* < T<KoT™
S(T) = =1
1
* S T
C,0T*+ S (T > 0T%*)
Ksl
K(T) = | Ka+(1—K)(T+35T*)[26T*
1
(T < —0T%)
(—8T* < T<ST*)
(T > 0T™).
The dimensionless energy equation for the container
wall is
oT_ 1 aflafer\ &T|
&t = Re Pre o, | R R\ Rer) Taxz | 19

The initial and boundary conditions are non-
dimensionalized as follows:

initial conditions: t = 0

entire domain: 0 < X< L/D,0 < R< R,

T=T, U=V=0 (16a)
boundary conditions: t > 0
inlet plane: X =0
0<R<05: U=1.T=1,FV=0
oT
outer wall: 0 < X < L/D, R =R,
éT
b - 1
R|x_n 0 (16¢)
PCM-wall interface: 0 < X < L/D, R = R,,
k, oT oT
Eﬁ_R R:R;_ﬁkrkw (léd)
wall-fluid interface: 0 < X < L/D, R = 0.5
or ke 0T (16¢)
bl v e
aR R=05" kw 6RR:()45

outer plane: X = L/D

T
O<R<R,: ~.=0
CX
0<r<05 ‘Yo 160
S0 =0 (160)

It can be seen that the temperature field can be
expressed as

T =T, R, X, Rey, Pri. oo, 2 /%
St, Cy. 0T*, Ky, kyjk . Kk, .

ro/D.ro/D. LID). (17)

NUMERICAL PROCEDURE

The problem has been specified mathematically by
equations (10)—(16). The solution procedure used for
solving these equations is the control-volume finite-
difference approach described by Patankar [10, 11].
In this methodology, the discretization equations are
obtained by applying the conservation laws over a
finite size control volume surrounding the grid node
and integrating the equation over the control volume.
The velocities and pressure are solved by using the
SIMPLE scheme [10]. At the PCM-wall and the wall-
fluid interfaces, the harmonic mean of the thermal
conductivity with a uniform grid size is

ore « ore 2k k, OT°

P = Awo T T A
or |-, or | kptke Or,_,,

P ore oT* 2k ke CT
T = Ky—(— = - A .
" or r=at or r=r" kw +kt ar r=or

The discretization equations are solved by using
the tridiagonal matrix algorithm (TDMA or Thomas
algorithm). During each time step, iterations are
needed. The converged results were assumed to be
reached when the maximum relative change of all
variables between consecutive iterations was less than
0.1%. The residual of the continuity equation was
also checked. The iteration was continued until the
sum of the residuals was less than 10~ °. Different grid
sizes for the same problem have been tested and it
proves that both the PCM model and the numerical
scheme used for the transfer fluid are essentially inde-
pendent of grid sizes for the numerical results in the
next section. The space and time grid specifications
are given in the next section for the cases presented.

NUMERICAL RESULTS AND DISCUSSION

Before presenting the numerical results for the
phase-change system, the phase-change model (equa-
tion (5)) was checked against other numerical results
for a two-dimensional freezing problem. Consider a
liquid initially at 77 in an infinitely long prism with a
uniform cross section [12]. At ¢ > 0, the surface is kept
at a temperature 79 < T, and freezing takes place
immediately. Because of the symmetry of the
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Fi1G. 2. Interface position along the diagonal with prescribed boundary temperature.

geometry, only a quarter of the prism is considered.
Figure 2 shows the interface position as a function of
ta/1? along the diagonal. Also included in this figure
are solutions by Hsiao and Chung [12], and by Cao
et al. [5]. It can be seen that the present model agrees
well with the results of these studies.

The numerical calculations for the thermal energy
storage system were then conducted with the con-
figuration as shown in Fig. 1. The system is initially
at a temperature 7, < 0 (less than the melting tem-
perature of the PCM). The hotter fluid enters into the
circular channel and heats the system, which absorbs
the energy from the fluid and stores it as both latent
and sensible heat. The grid size used for the cal-
culations was 70 (axial) x 20 (radial transfer fluid) x 5
(container wall) x 15 (PCM) with dimensionless time
steps of Az = 5 or 10. In order to simulate the phase
change at a single temperature using equation (14),
the dimensionless phase-change temperature 67* is
taken to be 0.01.

Figure 3 shows the axial velocity distribution in the
radial direction at X = 6 at different times. It can be
seen that the velocity reaches the steady state quickly.
After T = 20, the velocity profile remains unchanged.
This does not mean the velocity profile has reached
the fully developed condition along the pipe. Since the
pipe is comparatively short and the Prandtl number
is small, the developing velocity region is dominant
along the whole pipe length. The temperature profile,
however, is different. Figure 4 shows the radial tem-
perature distribution at X =6 for different time
periods. The three regions in the radial direction
(transfer fluid, container wall, and the PCM) are also
indicated in the figure. The melting interfaces at
different times are the intersections of 7 = 0 and the
corresponding temperature curves. It can be seen that
as the melting interface progresses, the temperature
curve moves upward accordingly. Although the vel-
ocity field of the transfer fluid reaches the steady state
quickly, its temperature counterpart cannot reach the
steady state before the PCM is totally melted. This

clearly demonstrates that the use of steady fully-
developed empirical heat transfer correlations for the
transfer fluid may result in a significant error for the
evaluation of the system performance.

Figure 5 shows the melting interface along the axial
direction at different times. At 7 = 1000, the melting
interface has reached the outer surface (r = r,) for
X < 6, while some PCM remains unmelted for X > 6.
The reason is that since the Prandtl number of the
transfer fluid is very small (the thermal conductivity
is very large) a large amount of heat is transferred
directly to the PCM upstream while a relatively small
amount of heat is carried downstream. Figure 6 shows
the melting interfaces along the axial direction for the
transfer fluids with different Prandtl numbers. With a
smaller Prandtl number, heat transfer to the PCM is
much faster as indicated in the figure.

As in normal forced convective heat transfer, the
Reynolds number has a significant influence on the
system performance. This is illustrated in Fig. 7 with
the same Prandtl number and different Reynolds
numbers. Since the dimensionless time 7 contains the
inlet velocity U,, the comparison has been made at a
dimensional time ¢. The dimensionless time for the
case of Re; = 2200 was taken as t = 1000, the cor-
responding dimensionless times for Re; = 1700 and
1200 were 773 and 545, respectively, with the assump-
tion of the same D and v; for the three cases.

Since the transfer fluid is a liquid metal, the thermal
conductivity has the same order of magnitude as that
of the container wall. The influence of the thermal
conductivity of the wall on the system performance
may not be as important as those using gases as trans-
fer fluids, as illustrated in Fig. 8.

It is very important to evaluate the overall per-
formance of the system and to optimize the geometry
of the system with given flow parameters and thermal
properties. The important system parameters used to
evaluate a thermal energy storage system are the
energy storage capacity or total energy stored Q, (J),
the energy storage density Q,, Jm (J kg '), the
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FIG. 3. Axial velocity distribution of transfer fluid at X = 6 for different time periods.
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FiG. 5. Melting fronts along the axial direction for different time periods.
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FiG. 7. Melting fronts along the axial direction for different Reynolds numbers.
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+ o /=02, ke /%, =08, k/K,=0.07

C-r /o=t

6 8 10 12

FiG. 8. Melting fronts along the axial direction for different thermal conductivities of the wall at = 1000,

total latent energy stored @, (J) and the ratio of the
latent to the total energy stored @,/Q,. The first two
parameters, O, and @, are most important to an
energy storage system. In many cases, the energy stor-
age capacity is the primary parameter one would be

concerned with, while for a space application the
energy storage density is equally important because
the weight of the system is critical. With reference to
the geometry shown in Fig. 1, they can be expressed
as
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F1G. 9. System optimization analysis for different L/D at t = 1000.
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F1G. 10. System optimization analysis for different r /D at t = 1000.

LD

Q= DSppHnj (Ra(X)— Ry) dX = D’p Hng,

0

(18)

where R,((X) is the radial location of the melting

interface along the x-direction, and

LD
9= J‘ (R.an(X) ~ R} dXx

)

Ql = QI +2T[D3Cppp(T?n - T%)

R, (LD
x J J (T—T)RJRAX
R, JO

= Q+21D°c,p,(Ti = Th)g. (19

where

R, (LD
9. =j j (T—T)RdRAX
R, Jo

Q\/Q1 = 142519/, (20)
2 2 L
Qm = Ql/m = Hgl/(Ro _RW)B
L
+2T5 - T?n)cpy‘/(Rf—Ri)E- 2n

Figures 9 and 10 present the numerical results for
the system optimization analysis for different L/D and
ro/D. The dimensional parameters needed in equa-
tions (18)—(21) are H =2.9x 10T kg™ ', p, = 690 kg
m.c,=7420 kg™ ' K, T — T3 = 1954 K and
D = 0.1 m. Both Q, and Q, follow the trend of increas-
ing with larger L/D and r,/D, while Q,/Q, remains
almost constant. The high proportion of latent heat
storage in the PCM is largely attributable to the small
difference between the initial system temperature and
PCM melt temperature (7, = —0.1). The trend of the
energy storage density is different from those of Q,
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and @,. The energy storage density Q,, drops slightly
with the increase in L/D because the increase of O,
balances in part that of the total mass m which
increases with L/D. On the other hand, Q,, drops
significantly with the increase in r,/D. In this situation,
a trade-off needs to be reached when selecting the
design parameters.

CONCLUSIONS

An energy storage system with the configuration in
Fig. 1 has been studied numerically. Numerical results
show that the fluid velocity inside the pipe reaches
the steady state quickly, while the temperature field
continues to change as the melting interface
progresses. It is very important to treat the phase
change and the fluid flow as a conjugate problem and
solve them simultaneously. The numerical results for
the parametric study and geometry optimization pro-
vide guidelines for the design of a space-based thermal
energy storage system.
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CARACTERISTIQUES DE PERFORMANCE D’UN MODULE DE STOCKAGE
D’ENERGIE THERMIQUE: ANALYSE D'UNE CONJUGAISON PCM/CONVECTION
FORCEE VARIABLE

Résumé—On simule numériquement la performance d'un module de stockage d’énergie thermique. On

résout simultanément comme un probléme conjugué le changement de phase du matériau (PCM) et le

transfert par convection forcée variable d’un fluide a faible nombre de Prandtl. Une étude paramétrique

est faite avec une optimisation. Les résultats numériques montrent que la géométrie du module est cruciale
pour la conception d’un systéme de stockage d’énergie thermique.

DAS CHARAKTERISTISCHE VERHALTEN EINES WARMESPEICHER_S—
UNTERSUCHUNG DES KONJUGIERTEN PROBLEMS AUS INSTATIONAREM
PHASENWECHSEL UND ERZWUNGENER KONVEKTION

Zusammenfassung—Das Verhalten eines Wirmespeichers wird numerisch simuliert. Dabei wird der
Phasenwechsel und die instationdre erzwungene Konvektion bei kleiner Prandtl-Zahl simultan als
konjugiertes Problem berechnet. Eine Parameter-Untersuchung und eine Systemoptimierung werden
durchgefiihrt. Die numerischen Ergebnisse zeigen, daB die Speichergeometrie ausschlaggebend fiir die
Konstruktion des gesamten Speichersystems fiir Raumfahrtanwendungen ist.

PABOYUE XAPAKTEPUCTUKU MOJVJIS HAKOILJIEHUS TETUIOBOY SHEPIUH:
COBMECTHBII AHAJIN3 HECTALIMOHAPHOI'O ®A30BOT'O IMEPEXOIA U
BbIHYXXJIEHHO! KOHBEKLIMW

Amnoramms—Yucnenso MOICTHPYIOTCS pa6otme XaPAKTEPUCTHKH MOOYJs HAKOIUICHHA TEMJI0BOH

SHEPIrHH. ®a3opsIit nepexoj B MaTEpHAJIC H TCIUIONICPEHOC 3a CYET Hecraunonapﬂoﬁ BLIH)'KIICHHOﬁ KOH-

BCKIIMH NpH TCYCHHAH XHUOKOCTH C HU3KHUMH YHCIAMHU l'Ipanzrmﬂ HCCNEAYBITCA COBMECCTHO KaK COMNPAXKECH-

Hag 3ajgayva. HPOBOJISITCﬂ napaMerpmlecxni’l aHANIM3 ¥ ONTMMH3ALMA CHCTeMbl. YUHCIeHHBIE peaysibTaThl

MOKa3blBAKOT, YTO TE€OMCTPHSA MOAYJIS ABJIAETCA PCINAIOLINM d)am"opom pH pa3pa6o1'|(e TEMIOBBIX
SHCPreTHYCCKMX CHCTEM JUIA KOCMHYECKHX amlapaTos.



